文章编号:1005-006X(2003)03-0015-03

二恶英在流化床垃圾焚烧炉内生成及分解的模拟计算

浙江大学 邱坤赞 严建华 岑可法 中国计量学院 徐 旭

摘 要:以流化床垃圾焚烧炉为研究对象,初步建立了垃圾焚烧炉内二恶英生成的数学模型,理论计算结果表明焚烧炉在组织良好的 燃烧条件下,燃烧温度大于800 ,停留时间大于2s,入炉垃圾带入的二恶英分解效率可达99%。 关键词:城市生活垃圾;二恶英;流化床锅炉;环境保护 中图分类号:X511 文献标识码:A

Simulated Calculation on Formation and Decomposition of Dioxin in FB Incinerator QIU Kun-zan, XU Xu, YAN Jian-hua, et al.

Abstract: Taking fluidized bed incinerator as study object, a mathematical model of dioxin formation in furnace is established. The calculation results show that, under good combustion conditions the combustion temperature is over 800 , the residence time is more than 2 s, and decomposition rate of the dioxin brought in by the waste is up to 99%.

Key words: MSW; dioxin; FBC; environmental protection

二恶英是一种无色无味的脂溶性物质,包括 210 种化合 物,其每种异构体因氯原子的数量和位置不同毒性也不同。 二恶英是一类急性毒性物质,毒性很大,是氰化物的130倍、 砒霜的 900 倍,有"世纪之毒"之称。即使在微量水平下也具 有急性毒性、致癌性、致畸性、免疫毒性和生殖毒性等多种 毒性。通常,二恶英在环境中难溶于水、难分解,但易溶于 脂肪,因而容易在生物体内积累。世界卫生组织国际癌症研 究中心已将其列为人类一级致癌物。

二恶英不是天然存在的,它是由工业活动人为造成的, 主要是在含有有机氯化合物的生产过程中以及废弃物焚烧 过程中非意图性生成的,大多来自于化学品杂质、城市垃圾 焚烧、纸浆漂白及汽车尾气排放。二恶英类物质的污染途径 一般为大气、土壤、水以及以这些途径为媒体的食物。由于 它是微量毒性物质,在自然环境中难以降解,所以由此产生 的环境污染成了很大的世界性环境问题。

PCDD (m+n=1 \sim 8)

图 1 二恶英类物质的分子结构示意图

PCDF (m+n=1~8)

以垃圾焚烧为例, 二恶英类物质的产生过程主要包括: 二恶英在大于 600 ℃时的气相生成,为同相反应;二恶英 在 400~225 ℃温度范围内的前驱物催化生成和 "de novo synthesis"^[2]。前驱物催化反应为飞灰表面从前驱物(如氯酚、 氯苯) 在温度范围 225~400 ℃生成。前驱物可以直接来自 未完全燃烧的燃料或燃后区域多步反应生成。"de novo synthesis"合成反应从简单的碳氢化合物(活性碳颗粒)和 氯(自由氯或氯化氢,或飞灰表面吸附的氯,如氯化铜)通

收稿日期: 2002-09-23

邱坤赞(1972-),博士。热能工程研究所,310027

过气-气或固-固反应在空气和水分存在的条件下生成[2]。无 机氯不能单独形成二恶英,但二恶英可以在气相不存在氯源 的情况下,通过固相中氯源的氯化反应生成二恶英^[2]。

我国在 2000 年 6 月 1 日实施的《生活垃圾焚烧污染控 制标准》对垃圾焚烧锅炉的污染排放进行了严格的规定[3], 其中二恶英类大气污染排放标准控制在 1.0 TEQ mg/m3。世 界更有一些国家实行了更为严格的标准。本文就城市生活垃 圾流化床焚烧锅炉炉内二恶英的生成及破坏机理进行了数 值模拟计算,为流化床垃圾焚烧炉的二恶英类污染物的排放 控制提供了一个简单有效的计算方法和运行指导。

1 流化床焚烧炉热力计算

1.1 焚烧炉内传热计算模型

目前已有许多有关流化床锅炉炉内气-固两相流动和燃 烧过程的理论模型,但是炉内过程是一个重要而非常复杂的 过程,这些模型很难全面描述。炉内烟气速度场和扩散混合 过程决定于炉膛形状、燃烧器及其布置、一、二次风速等, 为了求解介质中的温度和辐射强度的变化必须同时解辐射 传递方程式和能量平衡方程式,由于锅炉的炉膛温度很高, 因此辐射传热是炉膛传热的基本形式,对流传热只占很小的 比例, 仅约5%。

采用零维模型计算 150 t/d 流化床垃圾焚烧炉的床层温 度和悬浮段温度。假定炉内各物理量如烟温、火焰黑度、受 热面壁温等都是均匀的, 炉膛传热计算模型是建立在计算辐 射传热的假想面方法基础上的,计算得到的结果也是某些平 均值:如平均炉膛出口温度、平均受热面热负荷等^[4]。

炉膛传热计算的基本公式有两个[4.5]:

(1) 热平衡方程式

(1)

 $\Phi = \varphi B_j V_c (T_j - T_l)$ 式中: Ф----辐射换热流量, W: ö-----保热系数, 对炉墙

PCB (m+n=1 \sim 8)

散热损失的修正; B_j ——计算燃料的耗量,kg/s; V_c ——1kg 燃料的燃烧产物在 $T_j \sim T_i$ 温度区间的平均热容量,J/(kg K); T_j ——绝热燃烧温度,K; T_l ——炉膛出口烟温,K。

(2) 辐射换热方程式

计算辐射换热的基本公式是斯蒂芬-包尔茨曼定律。根 据投射辐射计算换热流量

 $\Phi = \mathbf{s} a_{l} A T_{k}^{4} \mathbf{y}$ (2)

$$u_{l} = \frac{\boldsymbol{e}_{h}}{\boldsymbol{e}_{h} + (1 - \boldsymbol{e}_{h})\boldsymbol{y}}$$
(3)

式中: ——辐射常数(玻尔兹曼常数 5.6693 × 10^8 W/m²·K⁴); ₁——炉膛黑度;A——炉壁面积; _h——炉 膛的火焰黑度; T_k ——火焰平均温度; ——热有效系数, 水冷壁的辐射换热流量和水冷壁的投射辐射热热流量之比。

要计算出以上两个方程首先要求出:炉膛黑度 ₁、火 焰平均温度 *T_k*、壁面温度 *T_b*或热有效系数 ,具体可以参 考流化床锅炉的热力计算^[4,5]。

1.2 流化床炉内温度计算结果与测量值的比较

对焚烧炉的入炉垃圾按 9 种典型垃圾组分 :纸张、织物、 木头、塑料、橡胶、厨余、玻璃、金属和灰尘进行分拣,取 平均值,得到组分在入炉垃圾中的比例,对垃圾组分和煤进 行分析,结果见表 1。当混合燃料中垃圾与煤的比例确定后 就可以计算出混合燃料的成分并利用垃圾和煤混烧的流化 床焚烧炉热力计算软件计算温度。计算中的结构参数采用杭 州某示范工程 150 t/d 流化床垃圾焚烧炉数据。

表 1 垃圾组分和煤的分析结果以及含量										
组分	$M_{ m ar}$ /%	C _{ar} /%	H_{ar} /%	O_{ar} /%	S _{ar} /%	N _{ar} /%	$A_{\rm ar}$ /%	$V_{ m ar}$ /%	$Q_{ m net}/ m kJ\cdot m kg^{-1}$	Percent/%
纸张	14.58	42.29	6.16	33.32	0.08	0.4	3.17	82.22	16 387	3.03
织物	20	40.48	5.2	28.98	0.15	2.52	2.67	70.36	14 649	3.93
木头	23.499	39.18	4.313	29.57	0.708	0.67	2.07	59.36	10 917	0.0
塑料	35.99	48.63	6.98	1.99	0.07	0.28	6.06	50.68	21 948	16.28
橡胶	2.82	72.14	9.58	2.144	1.652	1.76	9.89	83.71	22 403	0.0
厨余	77.07	8.93	1.21	7.54	0.07	0.47	4.71	13.45	1 370.32	34.52
玻璃	0	1.556	0.021	0.108	0.0	0.009	98.306	0	0	0.0
金属	0	4.54	0.63	4.28	0.1	0.05	90.4	0	0	0.0
灰尘	12.68	0.5	0.34	2.56	0.06	0.04	83.82	0	84.715	41.98
煤	9.96	56.24	3.68	4.87	0.82	1.09	23.35	23.08	21 837.9	-

图2为采用零维模型计算的流化床床层温度与7个工况 试验测试值的比较,计算值与测量值吻合较好,在二恶英计 算模型中将应用该计算温度作为二恶英反应温度进行计算。

图 3 给出了垃圾与煤比例改变时流化床悬浮段和床层 温度,温度受燃料影响明显,当煤比例增大,燃料在床层燃 烧份额增高,表现为悬浮段温度降低和床层温度增加。混合 燃料中垃圾比例越高挥发分越高,流化床悬浮段燃烧份额增 加,悬浮段温度高于床层温度。由图3可见,随混合燃料中 煤的比例增加,锅炉的蒸汽流量也逐渐增加,床层温度和炉 膛出口温度逐渐提高。该流化床焚烧炉设计工况时主蒸汽流 量最大,其中 1/3 来自垃圾焚烧,当煤的比例超过一定值后, 主蒸汽流量减少也会使炉内温度降低。

2 焚烧炉内二恶英的生成及破坏模型

燃料中的二恶英浓度通过各垃圾组分中二恶英浓度计 算出混合垃圾的二恶英含量,垃圾组分的二恶英含量由文献 [6]得到。假定煤中不含二恶英,设焚烧过程中燃料中的二恶 英全部释放。焚烧炉在设计工况运行(MSW:coal=70:30wt%) 时入炉燃料中的二恶英含量为 6.942 ng I-TEQ/kg 混合燃料。 在高温的焚烧炉内与二恶英相关的反应式如下^[7-8],表 2

给出了反应的速率常数:

氯酚浓缩生成二恶英

CP dioxins+2HCI	(4)
二恶英焚烧分解	
dioxins+ nO_2 mCO_2 + HCl	(5)
氯酚焚烧分解	
$CP+n O_2 mCO_2+ HCl$	(6)
式中, CP 代表氯酚, dioxins 代表二恶英类物质。	

流化床垃圾焚烧炉正常运行时燃烧温度大于 800 ,此 时焚烧炉内主要反应是二恶英、氯酚等有机物高温分解和燃烧,氯酚聚合生成二恶英的反应速率小于二恶英分解速度。

表 2 焚烧炉内二恶英生成相关反应的反应常数^[9-10]

反应	反应速率		
二恶英的生成	63.6exp[-83,600/RT]		
二恶英的燃烧分解	431exp[-46,600/RT]		
氯酚的燃烧分解	431exp[-46,600/RT]		

图 4 为设计工况时燃烧温度和停留时间对炉膛出口二 恶英浓度的影响。可见温度越高烟气中二恶英浓度降低越 快,停留时间越长二恶英的分解越完全。燃烧温度高于 800 ,停留时间超过 2 s ,烟气中的二恶英浓度分解率达到 99% 以上,800 (2 s)分解效率为 99.038%,(下转第 18 页) T型钢)外圆的椭圆度。很好的解决了这一问题。

1.7 将冷端旁路密封改为冷端旁路双密封

由于冷端旁路密封间隙为转子冷态状态时预留的间隙, 热态时转子变形后此间隙逐渐减小,形成对气流的密封作 用。但在低负荷时转子变形较小,造成冷端高压冷风直接通 过此间隙流向热端,增大了漏风量。为减小这一漏风及其对 旁路密封片的冲击,在冷端转子转子角钢(或T型钢)下部 加装一圈平法兰,在平法兰下部增设一道密封片,形成冷端 旁路双密封。对气流形成了良好的导流和密封作用,改善了 机组在低负荷时冷端旁路漏风较大的状况。

1.8 热端换热元件板型的改进

在以往的机组中,应用最多的热端换热元件板型是 DU₃ 型。此次技术引进中引进了换热效果更好、阻力更低的热端 换热元件板型 FNC 板型。如果采用这种板型对老机组进行 改造,在保证预热器原性能参数的情况下,可使受热面高度 下降 10% ~ 15%、阻力降低 10% 左右;如果采用 FNC 板型 制作同样几何尺寸的 DU₃ 型换热元件,则可相应提高预热 器的出口风温、降低排烟温度。

1.9 传动围带及大齿轮检修

(上接第 16 页) 850 (2 s)分解效率为 99.71%,900 (1.5 s)分解效率就达到了 99.565%。800 停留时间大于 4 s 分解效率为 99.99%。因此在某 150t/d 垃圾与煤混烧的流 化床焚烧炉中,在良好组织的燃烧条件下,保证燃烧温度高 于 800 和停留时间大于 2 s,绝大部分入炉垃圾带入的二 恶英可被分解,测试结果见文献[11]。

图 5 焚烧炉内二恶英的分解效率

图 5 为焚烧炉燃料中垃圾与煤不同比例对炉膛出口二 恶英浓度的影响(停留时间为 3.7 s),入炉燃料中垃圾和煤 的比例不同对锅炉内温度的影响明显,炉内温度通过流化床 热力计算得到。全烧垃圾工况炉膛出口二恶英浓度为 0.001 073 7 ng I-TEQ/Nm³,设计工况 0.000 101 955 ng I-TEQ/Nm³。 在机组运行一段时间后,围带圆柱销和大齿轮会不同程 度的磨损,围带圆柱销表面和大齿轮啮合相应部位出现平槽 或凹槽,并不断加大,影响传动平稳性。严重时围带销或齿 轮轮齿被磨断或咬死,迫使机组停运。根据经验,在磨损不 太严重的情况下将两台预热器的传动围带或大齿轮对换,基 本能够保证继续运行2个大修期,可为电厂节约40万元左 右的开支。在实际应用中取得较好效果。

1.10 传动方式的多样化

近年来,哈尔滨锅炉厂有限责任公司自主开发了以硬齿 面齿轮减速机为核心的中心传动装置。克服了围带传动开式 传动、传动效率低的弱点,为用户增加了选择。

2 结 论

结合引进的新技术,经过多年的消化、吸收和不断的实践、探索,这些措施已经成功地应用于多台机组的改造中,如平圩电厂 600 MW 机组、哈三电厂 600 MW 机组、铁岭电厂 300 MW、西柏坡电厂 300 MW 机组、石景山热电厂 200 MW 机组、柳林电厂 100 MW 机组、珲春电厂 100 MW 机组等,取得了良好的经济效益和社会效益。

编辑:霄 珉

3 结 论

垃圾焚烧过程中二恶英的生成机理非常复杂,包括二恶 英的高温气相催化反应、低温固-固反应(Langmir-Hinshelourod model)、低温气-固反应(Eley-Rideal)和从头合 成反应(de novo synthesis)以及炉内入炉垃圾中二恶英的分 解反应等。应用流化床热力计算方法和炉内二恶英生成及破 坏反应模型对垃圾与煤混烧垃圾炉在设计工况的二恶英排 放情况进行了预测计算,结果表明:焚烧炉在组织良好的燃 烧条件下,燃烧温度大于800 ,停留时间大于2s,入炉 垃圾带入焚烧炉的二恶英分解效率可达99%以上。计算结果 与实际测量结果比较符合,说明应用该方法预测垃圾焚烧流 化床锅炉炉内二恶英的排放是可行的。

参考文献

- USEPA method 1613. Tetra-through Octa-chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, Revision A [S]. 1990.
- [2] B K Gullette, Kevine Brach. The effect of metal catalysts on the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran precursors [J]. Chemosphere, 1990, 20: 1945 ~ 1952.
- [3] 国家环境保护总局. 生活垃圾焚烧污染控制标准(GWKB3-2000) [S]. 2000.2.29.
- [4] 秦裕琨. 炉内传热(第一版)[M]. 北京: 机械工业出版社, 1991.
- [5] 范从振. 锅炉原理(第一版) [M]. 北京: 水利电力出版社, 1986.
- [6] E. Abad, M A Adrados, J Caixach, *et al.* Dioxin mass balance in a municipal waste incinerator [J]. Chemosphere,2000, 40: 1143 ~ 1147.
- [7] H Huang, A Buekens. On the mechanisms of dioxin formation in combustion process [J]. Chemosphere, 1995, 31 (9): 4099 ~ 4117.
- [8] Donghoon Slin, Sangmin Choi, Jeong-eun On, *et al.* Evaluation of PCDD/Fs emission in MSWI [J]. Environment Science & Technology, 1999, 33: 2657 ~ 2666.
- [9] H Huang, A Buekens. Chemical kinetic modeling of de novo synthesis of PCDD/F in municipal waste incinerators [J]. Chemosphere, 2001, 44: 1505 ~ 1510.
- [10] H Vogg, M Metzger, L Stieghtz. Recent finding on the formation and decomposition of PCDD/Fs in MSW incineration [J]. Waste Manage Res., 1987(5): 285 ~ 294.
- [11] 李晓东, 邱坤赞, 徐旭, 等. 城市生活垃圾焚烧炉 PCDD/Fs 排放 特性的研究[J]. 工程热物理学报, 2001, 22(4): 526~528.

编辑:闻 彰